
How does ASCI actually complete 
multi-month 1000-processor 

milestone simulations?

Conference on High Speed 
Computing
April 22-25, 2002

Ken Koch
X-DO ASCI Applications Program Manager
Los Alamos National Laboratory

LA-UR-02-2288



Topics covered
1. general code issues
2. running Tera-scale milestone simulations
3. machine configuration and operational issues
4. some pitfalls 



½ A, B, C, ½ A Repeat for next ∆ttn tn+1

ASCI Simulation Codes 101
! Multiple Coupled Physics

! Time-marching on spatial grids
• 1D, 2D, 3D
• Cartesian, Unstructured, Continuous-AMR

! Physics A, B, C, ... (local, explicit, implicit, regional)

! Programming Languages
! F90 and/or C++ predominantly; some C for I/O etc.
! mixed languages is typical
! all data “containers” are dynamically allocated
! most data accessed by indirection memory references



ASCI Simulation Codes 101
! MPI distributed memory parallelism

! domain decomposition of spatial grids (predominately)
• Some use of decomposition in other domains (e.g. energy 

& space, particles)
! nearest-neighbor exchanges

• “some-to-some” or gather/scatter via point-to-point 
send/recv communications lists

• these exchanges essentially synchronize the overall 
program flow (SPMD-like)

! Significant use of all_reduce for global control/monitor 
variables and in implicit solvers (e.g. CG scaling)

! LLNL has used OpenMP with MPI



ASCI Simulation Codes 101
! Restart (“checkpoint”) dump files

! all nodes participate at given time step intervals
! I/O models

• local I/O per MPI process to individual files
• data aggregation to single MPI process to single file
• data aggregation to few MPI processes to single file via 

multiple I/O adaptors or multiple nodes
• parallel HDF5 over MPI-IO (recent)

! Graphics dumps done similarly or typically a 
restart dump serves both purposes



ASCI Tri-Lab Environment
LANL
ASCI Q (Compaq)

3 x 1024 x 4-way ES45
w/ Quadrics

Blue Mountain (SGI)
48 128-way O2K
w/ HiPPI

NFS servers
HPSS archival disk/tape
2 BlueMtn boxes dedicated

as viz servers
powerwalls, RAVE, IR-pipes

video distribution

LLNL
ASCI White (IBM)

512 x 16-way SP2
Blue Pacific (IBM)

3 x 512 x 4-way SP2
NFS & DFS servers
HPSS archival disk/tape
O2K viz servers
powerwalls, IR-pipes video

distribution

SNL
ASCI Red (Intel)

~4500 x 2-way MPP
NFS & DFS servers
HPSS archival disk/tape
O2K & cluster viz servers
powerwalls

SecureNet
WAN

Software
MPI,OpenMP,KCC,GCC
MPI-IO, parallel HDF5
LSF, DPCS
Totalview, Vampir
EnSight Gold, MeshTV



A node dies!
! Loss of a single node causes blockage of the 

overall simulation
! data is lost and must be recovered or regenerated
! key physics require neighbor exchanges or global 

reductions (if implicit)
! some MPI requests can’t complete

! Domain decomposition spreads vital data across 
all nodes
! each spatial cell exists in one and only one

processor’s memory (except possible ghost or halo 
cells)



High Availability Approach
! What would be needed?

! provide duplicate of all data quantities in memory
• 2X memory required
• impossible for one node to hold all data as a backup
• “slave” duplicate data or develop new overlapping 

decomposition methods (double assignment)
! dynamically recoverable and reconfigurable MPI
! resync all processes to know condition

• possibly rollback state of remaining N-1 processes (all 
variables & unwind their call trees)

! possibly request extra node from resource manager in 
real time; otherwise redistribute data from N to N-1 
domains

! Do this all in a verified manner for all physics 
modules with limited software developers



Restart Approach
! Use a checkpoint/restart capability!

! let job die and resubmit a restart job
! checkpoint/restarts are a normal way of doing business 

anyway
! sometimes there are common-mode failures across 

many nodes
• only waiting for system recovery helps

! Not elegant, but far easier with a proven track 
record (to-date)

! A minimum mean-time-to-interrupt of a few 
days (on 1/5 to 1/2 of system) is generally 
sufficient to prevent churning



Milestone Characteristics
! Few million to ½ billion cell 3D problems
! >500 to 4000 processors
! ½ to 2 GB per processor of data variables

! Weeks to months to complete just one 
simulation

! Machines and environment not fully mature



Milestone Characteristics
! Remote Classified machines
! Comparisons to experimental data

! Los Alamos, Livermore, and Sandia have each 
completed several and are signed up for one per 
year



LANL Milestone Example
! 3D “full-system” (primary + secondary) nuclear 

package explosion simulation (Dec01 Milestone)
! all processes from initial detonation to full explosive 

yield
! LANL’s Crestone Project completed this; LLNL did it too

! Ran on Livermore’s ASCI White remotely from 
Los Alamos
! ¼ of ASCI White (128 nodes) allocated to this effort
! Ran from March-June and August-October 2001; July 

was for memory upgrades; completed 2 months early
! ~2000-4000 processors; 123 wallclock days; 750 

processor years; 10’s TB of files



Restart, restart, restart!
! Each job starts where last left off (optimally)

! O(100-200) restarted jobs overall!
! Some jobs are deemed “inadequate” and must be 

repeated with different options/settings
! “steering” can be done between jobs (e.g. ∆t or AMR 

settings)

! Automated “smart” job script
! submit follow-on “dependant” job first; then run code 

for hours on end (chained jobs)
! Pre- & post-run actions from user command files
! Manual human archival of dump files done later

• Done out-of-phase of the actual job chains



Single Job’s Characteristics
! 24hrs runtime for each job submission (typical)

! Some runs were for 48 & 96 hrs each
! Jobs run until their time limit runs out
! 1000’s of processors using virtually all their memory
! Much longer jobs are not necessarily beneficial!

! Write a restart dump file(s) every ~70mins
! A single time step can be as long as 10mins
! Two forms of restart files

• an alternating A/B overwritten dump file pair
• permanent non-overwritten dump file series

! 100-250GB per restart file; used IBM GPFS parallel I/O 
at 1-2GB/s rates

! Fears of problems led to (overly?) aggressive writing of 
restarts



Humans keep it going
! Dedicated “monitor(s)” of running jobs

! “tail –f” of logfile and “ls -l”
! Long hours

• almost 24x7 at times
• on-call via pagers and cell phones

! Machine operators helped monitor jobs
! keep jobs running continuously in queues
! call people when needed
! read logfile “indicators” of classified run for someone at 

Los Alamos at their residence at night



Operational Issues
! Target machine availability & reliability to users

! if the machine isn’t available AND working right, users 
aren’t getting results

! reboot time for full systems are becoming outrageous
• White & Q(1/6 scale) now plan for 4 hours!

! little if any cluster-wide testing of parallel capability is 
“built in”

• reliability is sometimes an afterthought

! Must support mixed workload
! login, edit, compile, serial tests, serial production
! small scale parallel production (10’s-256 processors)
! large tera-scale testing and demonstrations (1000’s or 

processors
! large scale (100’s processor) debugging



Operational Issues
! dedicated test periods for developers

! regularly available by request of large dedicated 
machine partitions (50%–90% of whole machine)

! code, system, & vendor staff work as a SWAT-team

! weekly preventative maintenance
! two separate periods for hardware and software
! special test-suite was developed at LANL to verify 

machine functionality



Pitfall #1 - failed job starts
! Parallel jobs fail soon after launch

! large parallel job starts but then quickly fails
! obtuse error message or none at all
! continued identical resubmits may eventually get one 

to run properly!

! Parallel jobs fail to launch at all
! processors are available but vendor & layered 3rd party 

queuing systems fail to start new jobs
! nodes “die” and vendor & layered queuing systems get 

confused



Pitfall #1 - failed job starts
! Root Cause

! inadequate testing of layered queuing systems at
tera-scale configurations

! system services “blink out” on some nodes
! lack of meaningful error messages
! lack of cluster-wide admin tools to maintain consistency

! Mitigation
! humans must watch & “nudge” job launches
! smart job scripts and automatic retries
! retry failures, some of which turn out to be true bugs 

somewhere



Pitfall #2 - bad CPUs
! Bad CPU(s) in node(s)

! Milestone run generates NANs in middle of run in non-
repeatable fashion!

! Code team reruns from multiple restarts using multiple 
executables

! Cross-correlation points to suspect nodes which are 
removed from service

• Milestone runs can continue without errors on new nodes
! Suspect nodes

• passed LINPACK and other applications code tests
• must be tested in kernel-mode with vendor diagnostics -

they pass!
• “fixed” by vendor and returned to service



Pitfall #2 - bad CPUs
! Root cause

! bad HW instances
! per node probabilities do cause problems at large node 

count
! adequate testing can’t be done in user-mode
! no regularly scheduled functionality (verification) tests

! Mitigation
! look for NaNs in code results
! hope preventative maintenance is good enough
! need reliable nodes



Pitfall #3 - bad interconnect
! Bad optical HiPPI terminations

! led to “non-repeatable” HW link errors
! firmware and MPI SW did not detect & abort
! bad MPI data caused erroneous code results
! immature & complex OO code base presumed at fault
! code team spends days/weeks tracking down fault
! code team writes own data integrity checksums



Pitfall #3 - bad interconnect
! Root Cause

! MPI & interconnect HW design didn’t address this case

! Mitigation
! MPI & low-level communications test code written and 

run regularly across entire machine
! MPI design should allow data integrity check option



Pitfall #4 - bad I/O
! File system unavailable but program continues 

to run
! Global parallel file-system drops out
! Program runs through restart dump I/O calls without 

blocking or generating a system error!
! No files produced
! Code developer gets involved and helps test error 

actions associated with global parallel file system I/O 



Pitfall #4 - bad I/O
! Root Cause:

! system runtime I/O library design suspect
! inadequate system integration testing
! code doesn’t check for I/O errors directly

• BUT testing showed that would not have mattered as no 
error condition was generated!

! Mitigation
! backup to last restart and start over
! bug fix I/O runtime for this issue(?)
! presumed never to return



Pitfall #5 - bad archival
! HPSS archived restart files corrupted

! code will not properly restart from some files retrieved 
from archival HPSS storage

! code does restart from same file still residing on local 
scratch disks

! testing various HPSS restart files points to multiple bad 
files

! file compares prove corruption
! Milestone runs continue without relying on HPSS; disks 

get pretty full
! HPSS internal testing uncovers firmware bug on HPSS 

disks or controllers and estimated dates of vulnerability



Pitfall #5 - bad dump files
! Root Cause:

! firmware bug in “support” (HPSS) system
! no regularly scheduled functionality testing

! Mitigation
! have to live with expected gap in simulation restart 

sequence
! “once in a lifetime” bug?
! Data integrity is key user expectation!



Key Issues to Remember
! Codes need to run in 1-3 day chunks with 

restarts in between
! Human decisions are necessary
! Jobs run to completion on dedicated nodes

! A single job is not mission critical and does not 
have to be high availability by itself
! Human monitoring and control are necessary to keep 

chained jobs going



Key Issues to Remember
! Node drop outs require the simulation to stop

! domain decomposition doesn’t result in redundant data
! lost data variables can’t be ignored or regenerated
! easiest to back up to last restart file dump time in a 

new job
! requires modest several day RELIABLE system for the 

parts of the machine in use

! Machine resources are fully committed
! no extra memory; no idle nodes
! large memory sets and processor counts



(My) Perceived Weak Areas
! Job launching

! better queuing system integration testing (and design?)
! better error messages
! cluster-wide admin tools are needed

! Inadequate “verification” testing of the machine 
environment 
! End users see errors that possibly could have shown up 

in testing
! Applications code developers get drafted into helping 

identify problems
! Machine test periods have been valuable to users

• resolves problems quickly and more efficiently
• process benefits all users


